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Sound radiation in turbulent channel flows
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Lighthill’s acoustic analogy is formulated for turbulent channel flow with pressure
as the acoustic variable, and integrated over the channel width to produce a two-
dimensional inhomogeneous wave equation. The equivalent sources consist of a
dipole distribution related to the sum of the viscous shear stresses on the two
walls, together with monopole and quadrupole distributions related to the unsteady
turbulent dissipation and Reynolds stresses respectively. Using a rigid-boundary Green
function, an expression is found for the power spectrum of the far-field pressure
radiated per unit channel area. Direct numerical simulations (DNS) of turbulent plane
Poiseuille and Couette flow have been performed in large computational domains in
order to obtain good resolution of the low-wavenumber source behaviour. Analysis
of the DNS databases for all sound radiation sources shows that their wavenumber–
frequency spectra have non-zero limits at low wavenumber. The sound power per
unit channel area radiated by the dipole distribution is proportional to Mach number
squared, while the monopole and quadrupole contributions are proportional to the
fourth power of Mach number. Below a particular Mach number determined by the
frequency and radiation direction, the dipole radiation due to the wall shear stress
dominates the far field. The quadrupole takes over at Mach numbers above about
0.1, while the monopole is always the smallest term. The resultant acoustic field at
any point in the channel consists of a statistically diffuse assembly of plane waves,
with spectrum limited by damping to a value that is independent of Mach number
in the low-M limit.

1. Introduction
Turbulence is an important sound source, and the mechanism of sound produc-

tion has been studied widely since Lighthill (1952, 1954) first explained turbulence-
generated sound by means of an acoustic analogy. He argued that the d’Alembertian
(∂2/∂x2

i − (1/c2
0)∂

2/∂t2) of the fluid density should tend to zero far from any vorticity-
containing regions, provided the sound speed is chosen corresponding to conditions
in the stationary fluid at infinity; the non-zero d’Alembertian that occurs in un-
bounded turbulent flow corresponds to an equivalent volume source distribution.
Lighthill classified such equivalent sources as monopole, dipole and quadrupole ac-
cording to their mathematical structure, and concluded that at low Mach numbers,
the most important sound source in homogeneous unbounded turbulent flows is a
quadrupole distribution related to fluctuating Reynolds stresses. The radiated sound
intensity in this case, when scaled on a typical density, velocity and length scale of
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the flow, varies as Mn with n = 5. However, the other sources can be significant in
certain circumstances. Morfey (1973) identified convected inhomogeneities of den-
sity or compressibility as dominant sources in turbulent flow at low Mach number,
while Morfey (1976), Kambe & Minota (1983), Kambe (1984), and Obermeier (1985)
investigated the monopole sound generated by turbulent dissipation.

In most numerical studies of aerodynamic sound radiation from unbounded flows,
only the Reynolds-stress quadrupoles have been considered, while viscous stresses and
the entropy source term are omitted. Exceptions are the low-Re two-vortex flow models
of Iafrati & Riccardi (1996) and Mitchell, Lele & Moin (1995), where dissipation
was included but was found to have little effect. The contribution of turbulent
dissipation to sound generation at higher Reynolds numbers remains controversial,
and is explored further in the present paper. The geometry we have chosen (a plane
infinite channel) offers two significant advantages for such a study: the acoustic sol-
ution is relatively straightforward, and the turbulent flow is statistically homogeneous
in two spatial dimensions. At the same time, the presence of rigid boundaries means
that viscous shear-stress dipoles appear at the channel walls (Powell 1960; Obermeier
& Möhring 1984, p. 185), and these must be included in the source description.

In a precursor to this paper, Morfey (1999) applied Lighthill’s acoustic analogy to
plane channel flow, and used a Green function formulation to find the plane-wave
mode pressure in the waveguide formed by the rigid channel walls, for the three
sources with lowest n (Reynolds-stress quadrupole, dissipation monopole, and wall
shear-stress dipole). The corresponding far-field intensities (per unit channel area)
were then compared in terms of their Mach number dependence. Note that for
each source the exponent n is reduced by 1 relative to its free-field value, because
of confinement by the rigid channel walls (Obermeier 1967; Ffowcs Williams &
Hawkings 1968). It was found that, provided the wavenumber–frequency spectrum
of the wall shear stress is finite at zero wavenumber, the wall-shear dipole term
dominates at low Mach numbers, with n = 2; the Reynolds-stress quadrupole term
and the dissipation monopole term both give n = 4. The acoustic efficiency ηac of the
various sources, defined as the ratio of the sound power radiated per unit channel
area to the mean power dissipated, varies as ηac ∼Mn. The two issues of whether the
dipole term vanishes, and the relative magnitude of the quadrupole and monopole
terms, are taken up in the present study.

Our approach is based on combining the Lighthill analogy with direct numerical
simulation (DNS), which now can tackle turbulent flow over a range of Reynolds
numbers. Detailed turbulent flow databases obtained via DNS have been successfully
used in studies where experiments have difficulty in providing measurements. The
simple geometry of plane channel flow has allowed investigators to run DNS up to
moderate Reynolds numbers, providing mean values and higher moments of velocity
and pressure, as well as kinetic energy and Reynolds stress budgets. Examples include
Kim, Moin & Moser (1987), Mansour, Kim & Moin (1988) and Moser, Kim &
Mansour (1999) for Poiseuille flow, and Kristoffersen, Beck & Andersson (1993) and
Komminaho, Lundbladh & Johansson (1996) for plane Couette flow. However, few
simulations of plane channel flow have been carried out in a computational domain
large enough to allow the streamwise and spanwise two-point correlations to drop
convincingly to zero. In aeroacoustics, the low-wavenumber structure is of most
concern. To obtain low-wavenumber results, the simulation domain needs to be large
enough.

In the present study, simulations of Poiseuille and Couette flow, based on very
large computational domains at several Reynolds numbers, are used to set up
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DNS databases for all the sound sources. Their wavenumber–frequency spectra are
analysed, and their contributions to the radiated sound intensity are compared fol-
lowing Morfey (1999).

2. Aeroacoustic formulation
Throughout §§ 2 to 6, an asterisk is used to label dimensional variables; the scaled

version is denoted by the same symbol without an asterisk.

2.1. Non-dimensional formulation of the acoustic analogy

Lighthill’s acoustic analogy describes departures from a steady background state, in
which the medium has uniform density and sound speed (ρ∗0, c∗0) and is either at rest,
or moves with uniform velocity. Perturbations in either pressure (P ∗ − P ∗0 ) or density
(ρ∗ − ρ∗0) are then described by a forced wave equation, where the wave operator
corresponds to freely propagating acoustic waves in the background medium.

We choose P ∗ − P ∗0 , rather than ρ∗ − ρ∗0, as the acoustic variable in the analogy
because this leads to a double time derivative, rather than a Laplacian, in the entropy
source term. Conversion of one of the time derivatives to a material derivative allows
this source term to be related to the dissipation function (Morfey 1976; Kambe 1984).

With all variables scaled on the reference quantities (ρ∗ref = ρ∗0, U∗ref , L
∗
ref ), the pres-

sure version of Lighthill’s acoustic analogy for an arbitrary unbounded fluid flow,
acted on by external body forces, is expressed in Cartesian coordinates xi (i = 1, 2, 3)
by

L(p) ≡
(
M2 ∂

2

∂t2
− ∂2

∂x2
i

)
p =

∂2

∂xi∂xj
[(1 + ρ)uiuj − τij)]− ∂Gi

∂xi
− ∂2

∂t2
(ρ−M2p). (1)

Here τij is the viscous stress, Gi is the applied force per unit volume, M is the scaled
version of 1/c∗0, and p and ρ are scaled pressure and density variables:

M = U∗ref/c
∗
0, p = (P ∗ − P ∗0 )/ρ∗0U

∗
ref

2
, ρ = (ρ∗ − ρ∗0)/ρ∗0. (2)

Note that the homogeneous equation L(p) = 0 describes small-amplitude sound waves
in a lossless uniform medium at rest.

2.2. Replacement of boundaries by source and dipole layers

The present problem differs in two important respects from that studied by Davies &
Ffowcs Williams (1968), who considered a source distribution of finite extent placed
in a waveguide: in our case unsteady vorticity is present throughout the channel (i.e.
volume sources extend up to the walls), and unsteady viscous stresses driven by the
turbulence are present at the walls of the channel. Application of the acoustic analogy
is facilitated by introducing a step function H (Ffowcs Williams & Hawkings 1969):

H =

{
1 in V ,
0 elsewhere.

(3)

Here V is any region of the flow field, bounded by a fixed closed surface S with
unit normal b = (b1, b2, b3), pointing into V . In order to exclude the boundaries, we
choose S to lie just inside the channel walls at x3 = ±(h− ε), with ε ↓ 0. Equation (1)
can then be generalized to apply in all space:

L(pH) =
∂2(TijH)

∂xi∂xj
− ∂(GiH + Biδ)

∂xi
+
∂(QH + Bδ)

∂t
. (4)
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Here δ stands for the delta function whose argument (n) equals the distance from S
measured into V ,

δ(n) = H ′(n) (n > 0 in V ). (5)

In equation (4), (Tij , Q) are volume distributions and (Bi, B) are surface distributions;
they are defined by

Tij = (1 +ρ)uiuj − τij , Q = − ∂
∂t

(ρ−M2p), Bi = Tijbj + pbi, B = (1 +ρ)uibi. (6)

No approximations have been made up to this point. However, asymptotic ordering
of the source terms requires careful treatment of the monopole term Q; this needs to
be calculated to O(M2) accuracy, in order to provide an estimate of radiated pressure
at low Mach numbers that is consistent with the O(1) quadrupole term Tij .

2.3. Rearrangement of the monopole term

We now use D/Dt to denote the material derivative and assume the fixed surface S
to be impermeable (uibi = 0), so that

DH

Dt
= 0,

∂H

∂t
= 0. (7)

By applying the identity

∂q

∂t
≡ Dq

Dt
+ q

∂ui

∂xi
− ∂(qui)

∂xi
(8)

to the quantity q = (ρ −M2p)H = ρeH (say), the following equivalent expression is
obtained for the volume monopole term Q:

QH = R(1 +M2p)H − [βM2 + (1 + β)M4p]
D(pH)

Dt
+
∂(ρeuiH)

∂xi
. (9)

Here

R =
∂ui

∂xi
+M2(1 + β)

Dp

Dt
(10)

is the excess dilatation rate due to either dissipative processes or heat input, and

β = (K∗ −K∗0 )/K∗0 , with K∗ = 1/(ρ∗c∗2), (11)

is a measure of relative variations in the compressibility of the fluid. The important
point is that provided the flow is adiabatic, non-reacting, and of uniform composition,
then (ρ, R, β) ∼M2, as shown in Appendices A and B; thus the first two terms in (9)
scale as M2 and M4, while the third term is a dipole-order distribution that scales as
M2, in the limit of low Mach number.

The energy equation can be used to relate R to the viscous dissipation function
(Appendix B), leading to the following asymptotic representation of (9):

QH = λM2ΦH +
∂(ρeuiH)

∂xi
+ (terms of order M4 and higher). (12)

Here Φ is the non-dimensional dissipation function, given by

Φ =
∂ui

∂xj
τij , with τij =

1

Re

(
∂ui

∂xj
+
∂uj

∂xi

)
+ O(M2). (13)

The dimensionless coefficient λ equals γ−1 for a perfect gas, γ being the ratio of specific
heats, but more generally it represents the Grüneisen parameter (ρ∗/T ∗)∂T ∗/∂ρ∗|s∗
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Figure 1. Sketch of turbulent channel (Couette) flow. The (x, y, z) notation shown here is used
interchangeably with (x1, x2, x3).

(Arp 1975). Other symbols (T ∗, s∗, Re) denote absolute temperature, specific entropy,
and Reynolds number (Re = ρ∗0U∗refL

∗
ref/µ

∗).
The generalized wave equation (4) is finally modified to read

L(pH) =
∂2(TijH)

∂xi∂xj
− ∂(FiH + Biδ)

∂xi
+
∂(QH)

∂t
. (14)

Here the volume dipole distribution is given by

FiH = GiH − ∂(ρeuiH)

∂t
(15)

(from (4) and (12)), while Tij is unchanged from (6); B is now zero because the fluid
normal velocity vanishes on S , and Q and Bi are redefined as

Q = λM2Φ+ O(M4), (16)

Bi = −τijbj + pbi. (17)

Equations (14)–(17) describe sound radiation from weakly compressible unsteady
viscous flows that are adiabatic and of uniform composition; the flow is assumed
to occupy an arbitrary region with fixed impermeable boundaries, but so far no
boundary geometry has been specified. In the next section, the equations are applied
to the interior of a plane two-dimensional channel with rigid walls, as sketched in
figure 1, with an outgoing-wave radiation condition in directions parallel to the walls.

2.4. Application to plane channel flow

The cancellation implicit in the dipole and quadrupole terms of (14) has an important
effect on the far-field radiation in the limit M � 1: it introduces additional factors
(M,M2) respectively in the radiated pressure (see § 3.4 below). To obtain the far-field
pressure correct to order M2, we use the fact that (ρ, ρe) ∼ M2 to approximate the
source terms as follows:

Tij ≈ uiuj − τij , Fi ≈ Gi, Q ≈ λM2Φ, (18)

Bi = −τijbj + pbi. (19)

The body force Gi has been retained, in order to drive the Poiseuille flow described
in § 4 without incurring a non-uniform mean pressure along the channel, but its
wall-normal component is zero.

The resulting inhomogeneous wave equation (14) is most conveniently solved by
using a rigid-boundary (Neumann) Green function, whose normal derivative vanishes
on S; this eliminates the surface dipole in the normal direction, and leads to a solution
in the form of acoustic channel modes (Morse & Ingard 1986, p. 500). The channel
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modes are dispersive, making it advantageous to formulate the acoustic solution in
the frequency domain. Note that for a fixed value of the scaled frequency

f =
f∗L∗ref

U∗ref

(f∗ = dimensional frequency), (20)

the Helmholtz number based on channel half-width h∗ tends to zero in the low-Mach-
number limit:

He =
f∗h∗

c∗0
= fhM → 0 as M → 0. (21)

When He is less than 1/4, all the higher-order modes are evanescent, and only
the plane-wave mode survives in the far field. This fact will be exploited in § 3,
where attention is focused on the plane-wave mode by integrating (14) across the
channel width to yield a two-dimensional equation for the averaged instantaneous
pressure pav(x, y, t). Here x, y are streamwise and spanwise coordinates in the channel
horizontal plane, as shown in figure 1.

3. Far-field sound radiation in a plane channel
3.1. The role of viscous stresses

Lighthill (1952) originally justified his lossless analogy formulation on physical
grounds, by arguing that viscous attenuation of sound was a weak process at audio
frequencies. A correction for such attenuation could therefore be made retrospectively.
We shall follow the same approach in justifying the use (in § 3.2 below) of an inviscid
wave operator; for this purpose we need to show that the attenuation per wavelength
is small (or at least less than 1) over the frequency range of the present simulations.

Sound waves propagating in a viscous fluid, between rigid plane parallel walls, are
damped by the action of viscous shear stresses at the walls (Howe 1995; Pierce 1989,
pp. 532–534). If heat conduction in the fluid is neglected, the dispersion relation for
the lowest-order acoustic channel mode in the absence of mean flow may be written
as (

k∗

k∗0

)2

≈ (1 + 4
3
iε)

(
1 +

1√−iσ

)
(ε� 1, σ � 1). (22)

Here k∗/k∗0 is the ratio of the propagation wavenumber to the lossless acoustic wave-

number 2πf∗/c∗0, and i =
√−1. The non-dimensional parameters ε, σ are related to

the kinematic viscosity ν∗, and are defined by

ε =
2πf∗ν∗

c∗0
2

=
2πfM2

Re
, σ =

2πf∗h∗2

ν∗
= 2πfh2Re; (23)

the ratio of channel width to viscous penetration depth is
√

2σ.
Equations (22) and (23) apply to a channel containing stationary fluid. However

Howe (1995) has argued convincingly, with support from the pipe-flow experiments
of Peters et al. (1993), that the no-flow attenuation coefficient given by (22) remains
a valid approximation in turbulent channel flow at low Mach numbers, provided
the frequency is not too low. There is a transition at low frequencies to a regime
where the turbulence responds quasi-statically to the incident sound; large increases
in attenuation are then possible. Quantitatively, Howe’s predictions for the frequency-
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dependent attenuation coefficient α(f) give

α(f → 0) = αe 'Mτ/umax (quasi-static, f < 10−3Reτ); (24)

α(f →∞) = α0 ' 0.5Mτ

√
πf/Reτ (flow-independent, f > 5× 10−3Reτ). (25)

All quantities in (24) and (25) are scaled using the friction velocity (indicated by the
τ subscript) and the channel half-width; the maximum flow velocity in the channel is
denoted by umax. Corresponding asymptotes for αλ (attenuation per wavelength) are

αλ( f → 0) ' 1/fumax, αλ( f →∞) ' π/√2σ. (26)

The second of the expressions in (26) is always less than 1, down to the lowest
frequency for which it is valid (f ' 5× 10−3Reτ), given that Reτ > 80 for all the
turbulent channel flow simulations presented here. It follows that at all frequencies
above fmin = 1/umax, the attenuation of the plane-wave channel mode is sufficiently
weak – in the sense that αλ < 1 – to justify a lossless analogy formulation, provided
a retrospective correction is made for attenuation (as in § 6.6 below). The weak-
attenuation criterion sets a lower limit of fmin = 0.049 for Poiseuille flow at Reτ =
360; the lowest frequency at this Reτ for which numerical results will be presented
is f = 0.39 (figure 17). Corresponding values for Reτ = 135 are fmin = 0.057 and
f = 0.078. (At these lowest frequencies, the channel width is respectively 42 and 11.5
times the viscous penetration depth (σ = 882.2, 66.1).)

Finally we note that neglect of viscous damping would lead, in a channel of infinite
extent, to an infinite mean-square radiated pressure (Olbers’s paradox). Nevertheless
we are able to bypass the damping issue initially, by presenting results for the sound
power radiated per unit area of channel. Only in § 6.6, where we estimate the local
mean-square pressure in the channel due to acoustic radiation, is it necessary to
introduce the damping explicitly.

3.2. Two-dimensional form of the wave equation

The use of rigid-wall boundary conditions to solve (14) eliminates the normal sur-
face dipoles B3 on both walls of the channel. Integration over the channel width
(x3 = −h to x3 = h) leads to a two-dimensional inhomogeneous wave equation in
scaled variables,

L2{p(x, t)} =
∂2tαβ

∂xα∂xβ
− ∂fα

∂xα
+
∂q

∂t
= S(x, t); (27)

the two-dimensional wave operator is defined by L2 ≡M2∂2/∂t2 − ∂2/∂x2
α, and xα

(α = 1, 2) are the Cartesian components of the two-dimensional position vector x in
the horizontal plane of the channel.

The pressure p is now the average over the channel width, previously denoted by
pav: it represents the pressure in the plane-wave mode, for the waveguide formed
by the channel walls (see the final paragraph of § 2). Propagation of the plane-wave
mode is described to lowest order in M by a convected wave equation, with the
background medium moving at the bulk mean velocity of the channel flow. The
effects of convection on the sound field are not included in the wave operator on the
left of (27), on the basis that they appear as order-M corrections to the estimates
presented in this paper (Pagneux & Froehlich 2001). The effects of refraction on the
plane-wave mode are of higher order again in Mach number.
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The multipole distributions on the right of equation (27) are given by

quadrupole: tαβ =
1

2h

∫ h

−h
Tαβ dx3 (Tαβ ≈ uαuβ − ταβ), (28)

dipole: fα = − 1

2h
(τ(u)
α + τ(l)

α )′ =
1

2hRe

{(
∂uα

∂x3

)(u)

−
(
∂uα

∂x3

)(l)
}′
, (29)

monopole: q = λM2Ψ, with Ψ =
1

2h

∫ h

−h
Φdx3. (30)

In equation (29), τα denotes the viscous shear force on the wall per unit area, primes
indicate that the time-average value has been subtracted out, and superscripts (u), (l)
refer to x3 = +h,−h, respectively. Note that when the wall shear forces per unit
area, τα = ±τα3, are expressed in the wavenumber domain as τα(kx, ky, t), the zero-
wavenumber component τα(0, 0, t) does not necessarily vanish, whereas the viscous
stress components ταβ do have ταβ(0, 0, t) = 0 for incompressible flow. Anticipating the
analysis of § 3.4, it can be seen that the viscous part of the quadrupole tαβ in (28) will
not contribute to sound radiation in the present low-Mach-number approximation.

3.3. Frequency-domain solution

It is easier to solve (27) in the frequency domain. Fourier transformation leads to a
Helmholtz equation, (

∂2

∂x2
α

+ k2
0

)
p(x, f) = −S(x, f); (31)

here f is the non-dimensional frequency, and k0 is the non-dimensional acoustic
wavenumber,

k0 = 2πf∗L∗ref/c
∗
0 = 2πfM. (32)

The definition used for transforming any variable v(x, t) from time to frequency is

v(x, f) =

∫ +∞

−∞
v(x, t) ei2πft dt. (33)

The sign convention in the exponential factor is the opposite of that used later
for spatial Fourier transforms, and is chosen for convenience in interpreting wave
propagation directions.

Let g(x|y) be the point-source solution of (31) with S replaced by the two-
dimensional delta function δ(x− y); then the pressure field due to the source distri-
bution S is

p(x, f) =

∫
S( y, f)g(x|y) d2y, (34)

where the integral extends over the entire two-dimensional source region. Because
equation (27) is valid everywhere (the channel is of infinite extent), and has constant
coefficients, the quadrupole and dipole contributions to the pressure can be expressed
as

pquad =
∂2

∂xα∂xβ

∫
gtαβ d2y, pdip = − ∂

∂xα

∫
gfα d2y, (35)

provided the integrals converge (Lighthill 1978, pp. 62–63). This result allows replace-
ment of the actual source, S(x, f), in (31) by an equivalent source distribution for
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far-field radiation, Γ (x, f), whose value depends on the radiation direction as specified
by the unit vector e = (e1, e2):

Γ (x, f) = (ik0)
2eαeβtαβ − ik0eαfα − i2πfq. (36)

The (ik0) factors on the right of (36) arise from the far-field Green function, as dis-
cussed below. The absence of spatial and temporal derivatives in this result, compared
with the original S(x, t) expression (27), simplifies the computation of radiated sound;
furthermore the inherent quadrupole and dipole cancellation is allowed for in the k2

0

and k0 factors (proportional to M2,M respectively).

3.4. Far-field radiation from a finite region of turbulence

We now consider the radiation emitted by a finite sub-region of the source (in two
space dimensions and time), defined by 0 < x1 < L1, 0 < x2 < L2, and 0 < t < T . The
source distribution S(y, t) and the corresponding radiated pressure p(x, t) then both
have finite Fourier transforms with respect to t, and the power spectral density of the
radiated pressure in the channel, normalized to unit channel area, is given by

sp(x, f) = E

{
lim

T ,L1 ,L2→∞
1

TL1L2

|p(x, f)|2
}
. (37)

Our aim is to evaluate (37) for positions x such that |x| � (L1, L2, (fM)−1).
The frequency-domain far-field pressure is given by the Green function integral

(34), with S replaced by Γ from (36), and with the following expression for the
outgoing-wave Green function in two dimensions that describes the plane-wave mode
in the channel (see § 2.4):

g(x|y) = 1
4
iH (1)

0 (k0r) (e−i2πft convention; r = |x− y|)
≈ 1

(8πk0r)1/2
ei(k0r+π/4) (k0r � 1). (38)

Here H (1)
0 is the zero-order Hankel function J0 + iY0. Since in the far field

∂g(x|y)/∂xα ≈ eα∂g/∂r ≈ ik0eαg, (39)

it can be seen that (36) follows from (35). The Green function (38) is further simplified
by applying the Fraunhofer approximation,

r ≈ |x| − e · y, (40)

to the exponential term. This gives the far-field result

p(x, f) ≈ ei(k0|x|+π/4)

(8πk0|x|)1/2

∫ L2

0

∫ L1

0

Γ (y1, y2, f) e−ik0(e1y1+e2y2)dy1dy2. (41)

The double integral over y1 and y2 can be recognized as a two-dimensional spatial
Fourier transform of the equivalent source distribution, Γ (k, f), evaluated at wave-
number k = k0e.

Finally, substituting (41) in (37) gives

sp(x, f) ≈ 1

8πk0|x|E
{

lim
T ,L1 ,L2→∞

1

TL1L2

|Γ (k, f)|2
}
k=k0e

. (42)

The expected value on the right of (42), when divided by (2π)2, becomes the three-
dimensional power spectral density of Γ (x, t) in wavenumber (k1, k2) and frequency (f);
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the (2π)2 arises from the use of angular wavenumber, as is conventional in fluid
mechanics and acoustics. With SΓ (k, f) used to denote this wavenumber–frequency
spectrum, an equivalent version of (42) is

sp(x, f) ≈ 1

4fM|x|SΓ (k0e, f) (fM|x| � 1). (43)

Note that the far-field acoustic intensity per unit channel area has a frequency
spectrum equal to Msp(x, f); the additional factor M cancels the 1/M on the right
of (43).

3.5. DNS application

All components of the multipole distribution defined in (28) to (30) have been
calculated for fully developed turbulent channel flow, using the DNS scheme described
in § 4. Time series of the separate source terms are stored in a database as a function
of simulation wavenumber components k1 (streamwise) and k2 (spanwise). In a
postprocessing operation, the time series for each term at each wavenumber is divided
into eight non-overlapping time segments of equal length. Each time segment has its
mean subtracted and a Hanning window applied, before Fourier transformation into
the frequency domain with (33) to yield an estimate of the corresponding term in
Γ (k, f). The power spectrum SΓ (k, f) is then obtained from

SΓ (k, f) =
1

(2π)2
E

{
lim

T ,L1 ,L2→∞
1

TL1L2

|Γ (k, f)|2
}
. (44)

In equation (44), the expected value is estimated by first smoothing in frequency and
then averaging over the eight time segments. Frequency smoothing is implemented
as a seven-point moving average based on seven successive frequency bins; note the
frequency resolution of the transforms can be read from the frequency spectra, since
it equals the lowest frequency plotted. Examples of source spectra are presented in
§ 6, for both Poiseuille and Couette flow.

4. DNS of incompressible plane channel flow
4.1. Governing equations and summary of numerical method

The governing continuity and momentum equations of incompressible turbulent flow
are non-dimensionalized using a reference length L∗ref equal to the channel half-
width h∗, and with the reference velocity, U∗ref , chosen as the friction velocity u∗τ for
Poiseuille flow, and the wall velocity u∗w for Couette flow (both the upper and the lower
walls move, with velocity u∗w and −u∗w respectively). The non-dimensional continuity
equation and the rotation form of the momentum equation can be written as

∂uj

∂xj
= 0, (45)

∂ui

∂t
= εijkujωk + δ1iΛ− ∂Π

∂xi
+

1

Re

∂2ui

∂xj∂xj
. (46)

Here ωi is the vorticity component, ωi = εijk∂uk/∂xj; Reynolds number is Re =
U∗refh

∗/ν∗, equal to Reτ = u∗τh∗/ν∗ for Poiseuille flow, and Rew = u∗wh∗/ν∗ for Couette
flow; ν∗ is the kinematic viscosity of the fluid; Π = p+ uiui/2 is the non-dimensional
modified pressure; εijk is the permutation tensor; and δ1iΛ is the driving mean pressure
gradient, equivalent to a body force Gi.
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Poiseuille flow is a pressure-gradient-driven flow. Taking the Reynolds average
(denoted by the overbar) of the streamwise momentum equation, we obtain

Λ =
∂

∂z
(u′w′ − τxz), (47)

where τxz = (1/Re)∂ūx/∂z is the mean viscous shear stress. The non-dimensional mean
pressure gradient Λ = 1 in plane Poiseuille flow, so the total non-dimensional shear
stress equals z. On the other hand, plane Couette flow is driven by the movement of
the walls. There is no mean pressure gradient for Couette flow, and the total shear
stress is constant across the channel.

Numerical solution of equations (45), (46) follows the spectral method of Kleiser &
Schumann (1980) (see also Canuto et al. 1987, pp. 79–81), with Fourier and Chebyshev
methods used for spatial discretizations, and an implicit treatment of pressure and
viscous terms to avoid extremely small time steps in the near-wall region. The Adams–
Bashforth time advance of Kleiser & Schumann (1980) was replaced by a third-order
Runge–Kutta method for the convective terms and the whole method was parallelized
(Sandham & Howard 1998).

4.2. Spatial derivatives

Spectral methods are an accurate way of forming spatial derivatives, for wavenumbers
below some upper limit set by the spatial resolution. Fourier spectral methods require
periodic boundary conditions, while Chebyshev methods can be applied to non-
periodic directions. In the present problem, Fourier discretization is used for the
channel horizontal plane, and the Chebyshev tau method is used for the wall-normal
direction.

In the horizontal plane, a two-dimensional Fourier transformation from real to
wave space is accomplished by a streamwise real to complex Fourier transformation,
followed by a complex to complex Fourier transformation in the spanwise direction.
After the streamwise transformation, only the mean and the positive Fourier modes
need to be stored owing to symmetry. A real quantity q(x, y) is transformed to q̃(kx, ky)
in discrete Fourier space by the successive operations:

q̃(kxl , yj) =
1

Nx

Nx−1∑
i=0

q(xi, yj)e
−i2πli/Nx , (48)

q̃(kxl , kym) =
1

Ny

Ny−1∑
j=0

q̃(kxl , yj)e
−i2πmj/Ny , (49)

where xi, yj are the streamwise and spanwise coordinates of grid points with a total
number of Nx and Ny in the two directions (both even). Uniform grids are used, so

xi =
Lxi

Nx

(0 6 i 6 Nx), yj =
Lyj

Ny

(0 6 j 6 Ny). (50)

The spatial wavenumbers kxl , kym are given by

kxl =
2πl

Lx
(−Nx/2 6 l 6 Nx/2), kym =

2πm

Ly
(−Ny/2 6 m 6 Ny/2), (51)

where Lx and Ly are the non-dimensional computational box lengths in the streamwise
and spanwise directions.
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The two-dimensional backward transformation is done with a spanwise complex to
complex transformation, followed by a streamwise complex to real transformation:

q̃(kxl , yj) =

Ny/2∑
m=−Ny/2

q̃(kxl , kym) ei2πmj/Ny , (52)

q(xi, yj) = q̃(0, yj) + 2

Nx/2∑
l=1

q̃(kxl , yj) ei2πli/Nx . (53)

Chebyshev transformations are used for the wall-normal direction with the help of
the Chebyshev polynomial Tn(zk) (Canuto et al. 1987, pp. 79–81):

q̃(n) =

Nz−1∑
k=0

q(zk)Tn(zk), (54)

q(zk) =

Nz−1∑
n=0

q̃(n)Tn(zk). (55)

Here Nz is the number of wall-normal grid points, whose coordinates zk are a
non-uniform cosine profile

zk = cos

(
πk

Nz − 1

)
(0 6 k 6 Nz − 1). (56)

The nonlinear convective terms are calculated by zero-padding the separate factors
in wave space by 50% before transforming back to real space, where the nonlinear
terms are calculated. This ‘3/2 rule’ de-aliasing has been applied whenever nonlinear
quantities are required. Note that the process generates additional wavenumber
components in the wave-space representation, but these are truncated.

4.3. Initial condition

The initial flow fields consist of an approximate mean turbulent flow with super-
imposed artificial disturbances. Statistical data are accumulated only after the initial
influence has disappeared and the flow has statistically settled down. The convergence
is checked by comparing the statistical data in successive time segments, making sure
that they are consistent. All statistical data are averaged over the horizontal plane
and time.

5. Validation of DNS
5.1. Plane Poiseuille flow

The computational domain used for Poiseuille flow simulation at Reτ = 360 is 12h∗ ×
6h∗ × 2h∗, which is approximately twice (in Lx and Ly) what was used in Moser
et al. (1999, referred to as MKM hereafter) for Reτ = 395. In order to use periodic
boundary conditions, the computational domain must be large enough to include the
largest turbulent structures. This can be checked after the simulation by examination
of the two-point correlations of velocity, R(u′i), as shown in figure 2. The two-point
correlations fall to zero at maximum separation, demonstrating that the present
computational domain is adequate. The total number of grid points used is about
10 million (256 × 256 × 161 in x, y, z), with spacing of 16.88 and 8.44 wall units in
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(dash-dotted line) at z+ = 17.6 in Poiseuille flow. Reτ = 360. (a) Streamwise, (b) spanwise.
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Figure 3. Mean velocity of Poiseuille flow (solid line) compared with MKM
(dashed line, overlapped by the solid line).

the streamwise and spanwise directions respectively. The computation was carried
out with 128 processing elements (PE) on a Cray T3E and required about 12 000 PE
hours.

The mean velocity and turbulence intensities shown in figures 3 and 4 are in
good agreement with MKM. Symmetry of the results about the centreline indicates
well-converged statistics. The mean velocity profile collapses to the law of the wall,
u+ = (1/κ) ln y+ + B, with κ = 0.41 and B = 5.0.

The transport equations of the Reynolds stresses, Rij = u′iu′j , can be derived from
the continuity and momentum equations as

∂Rij

∂t
+ ūk

∂Rij

∂xk
= Pij + Tij − Dij − ∂

∂xk
(Juijk + J

p
ijk + Jνijk), (57)

where the terms on the right-hand side are given by

Pij = −
(
Rik

∂ūj

∂xk
+ Rjk

∂ūi

∂xk

)
, Tij = p′

(
∂u′i
∂xj

+
∂u′j
∂xi

)
, Dij =

2

Re

∂u′i
∂xk

∂u′j
∂xk

,

Juijk = u′iu′ju′k, J
p
ijk = p′u′jδik + p′u′iδjk, Jνijk = − 1

Re

∂Rij

∂xk
.

 (58)

In the above equations, Pij is the production due to mean velocity gradients, Tij is the
pressure–strain term, Dij is the ‘dissipation’ (it is different from the scalar dissipation
function Φ, which represents the transfer rate of energy from turbulence to heat) and
Jijk is the turbulence flux term, with contribution Juijk from the turbulence transport
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Figure 4. Turbulence intensities of Poiseuille flow (solid line: urms/uτ, dashed line: vrms/uτ,
dash-dotted line: wrms/uτ), compared on the right with MKM (long dashed line: urms/uτ,
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term, Jpijk from the pressure transport term, and Jνijk from the viscous transport term.
After the flow has become statistically stable, the terms on the right-hand side should
sum to zero.

Plane Poiseuille and Couette flow are homogeneous in the streamwise and the
spanwise directions, with zero Reynolds stress components R12 and R23. Budgets of
the four remaining turbulent stresses have been calculated as a check on our simu-
lation results, as shown in figure 5. The budget balances (sum of all terms on the
right-hand side) are of the order of 10−4. All quantities in figure 5 are normalized
using U∗ref = u∗τ , L∗ref = ν∗/u∗τ (wall scaling).
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Figure 7. Mean velocity of Couette flow (solid line) compared with KBA (dashed line).

5.2. Plane Couette flow

A simulation of plane Couette flow at Reynolds number Rew = 1300 was carried
out with a computational domain of 192h∗ × 24h∗ × 2h∗ and about 42.5 million grid
points (1024 × 512 × 81 in x, y, z). The simulation was run with 128 PEs on a Cray
T3E, requiring about 25 000 PE hours. The grid spacing was 15.38 and 7.69 wall units
in the streamwise and spanwise directions respectively. The computational box is
large enough to allow periodic boundary conditions to be applied in both streamwise
and spanwise directions, as demonstrated by the streamwise and spanwise two-point
correlations shown in figure 6 for a wall-normal position close to the kinetic energy
maximum.

DNS of Couette flow is more difficult than Poiseuille flow, since very long structures
exist in the central core of the channel (Komminaho et al. 1996). Hu & Sandham
(2001) found that in the spanwise direction the large structure in Couette flow
scales on channel width, and in the streamwise direction it scales on wall units. The
streamwise length scale of large structures in Couette flow is much larger than that
in Poiseuille flow.

Figure 7 shows the mean velocity profile found for plane Couette flow; it is in good
agreement with the Rew = 1300 simulation of Kristoffersen et al. (1993, referred to as
KBA hereafter), and has a typical S-shaped mean velocity profile, leading to a non-
zero mean velocity gradient at the centreline. The non-dimensional centreline velocity
gradient is 0.1924 for Rew = 1300; another simulation at Rew = 3400 gives 0.1980.
The DNS of Komminaho et al. (1996) for Reynolds number Rew = 750 gave a value
of 0.18. All these gradients are well within the range 0.15 to 0.3 given by Tillmark
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See figure 4 for legend.
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& Alfredsson (1993) from experimental data. The finite mean velocity gradient gives
Couette flow a finite shear stress at the centreline, which is necessary for non-zero
Reynolds stress production (as shown in figure 9a).

Turbulence intensities for plane Couette flow are given in figure 8, with all quantities
normalized by u∗τ . Results of KBA are also plotted with thin lines for comparison. The
streamwise and spanwise turbulence intensities of KBA are close to the present results
in the near-wall region, but smaller elsewhere; the differences are almost certainly
caused by the coarser resolution and smaller box used in KBA, as explained in Hu,
Morfey & Sandham (2002).

Budgets of Couette flow Reynolds stresses are shown in figure 9. All quantities
are scaled using wall variables. Very good balances are achieved, demonstrating high
accuracy in the simulations. The maximum imbalance is less than 2× 10−4.
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6. The acoustic sources of channel flow
6.1. Contributions to the source wavenumber–frequency spectrum

The source wavenumber–frequency spectrum, SΓ (k, f), defined in (42) and (43) can
be expressed as

SΓ (k, f) = λ2M4Sm +M2eαeβSαβ +M4eαeβeγeδSαβγδ + C (α, β = 1, 2), (59)

where Sm, Sαβ and Sαβγδ are order-1 wavenumber–frequency spectra associated re-
spectively with the monopole, dipole and quadrupole terms in (36), and C represents
cross-terms (e.g. dipole–monopole, dipole–quadrupole). Some but not all of the cross-
terms vanish at zero wavenumber, as a consequence of symmetry (Morfey 1999).
Attention is focused here on the first three terms, since if one of these dominates the
other two, the cross-terms will make only a minor contribution.

Expressions for the Sm, Sαβ and Sαβγδ spectra follow from substituting equations
(28)–(30) into (36):

Sm(k, f) = (2πf)2SΨ (k, f),
Sαβ(k, f) = (2πf)2Sfαfβ (k, f),
Sαβγδ(k, f) = (2πf)4Stαβtγδ (k, f);

 (60)

here Ψ , defined in (30), is the dissipation averaged over the channel width, and fα,
tαβ are defined in (29) and (28). The notation SΨ refers to the power spectrum of Ψ ,
and Spq refers to the cross-power spectrum of p and q.

Some simplification results from the fact that at zero wavenumber, certain of the
Sαβ and Sαβγδ components vanish, by symmetry, for plane channel flow: specifically,
those with odd numbers of indices 1 and 2 (Morfey 1999). Examples are

S12(0, f) = 0, S1112(0, f) = 0. (61)

The surviving contributions to SΓ (0, f) are given below (with arguments suppressed):

monopole: SΓ,m = (2πf)2λ2M4SΨ ,

dipole: SΓ,d = (2πf)2M2{e2
1Sf1f1

+ e2
2Sf2f2

},
quadrupole: SΓ,q = (2πf)4M4{e4

1St11t11
+ 2e2

1e
2
2St12t12

+ e4
2St22t22

}.

 (62)

When these terms are substituted in (43), it is clear that the wall-stress dipole radiation
dominates in the low-Mach-number limit, with

sp,d(x, f) ≈ π2fM

|x| {e
2
1Sf1f1

(0, f) + e2
2Sf2f2

(0, f)}, (63)

provided the zero-wavenumber spectral densities Sf1f1
(0, f) and Sf2f2

(0, f) are not both
zero. This last issue will be addressed in §§ 6.3 and 6.5 below, for Poiseuille and
Couette flow respectively.

6.2. Compactness of the equivalent dipole and quadrupole sources

Before proceeding further, it is necessary to check that two-point correlations of
the equivalent source distribution Γ (x, t) decay rapidly enough, as a function of
separation, that they fall effectively to zero within the box L1×L2. Here Γ (x, t) is the
Fourier transform of Γ (x, f) defined in (36):

Γ (x, t) = M2eαeβẗαβ +Meαḟα + q̇, (64)



286 Z. Hu, C. L. Morfey and N. D. Sandham

100

10–1

10–2

10–3

100

10–1

10–2

10–3

65432106543210

(a) (b)

DxDx

f = 5
10
20

C
oh

er
en

ce
 m

od
ul

us
 c

11
(D

y
=

0)

C
oh

er
en

ce
 m

od
ul

us
 c

11
11

(D
y

=
0)
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Figure 11. As figure 10, but for spanwise separation.

with dots denoting time derivatives. In this section we explore the two-point corre-
lation properties of the streamwise dipole term ḟ1 and the streamwise quadrupole
term ẗ11.

Wavenumber–frequency spectra for these quantities, denoted in (60) above by
S11(k, f) and S1111(k, f), are first formed from the DNS output as described in § 3.5.
Two-point cross-spectra follow via two-dimensional spatial Fourier transformation.
If S11(∆x,∆y, f) denotes the cross-spectrum of ḟ1 evaluated at points with separation
(∆x, ∆y), then

g11(∆x,∆y, f) = S11(∆x,∆y, f)/S11(0, 0, f) (streamwise dipole) (65)

is the complex frequency-domain coherence function for ḟ1, with magnitude 1 at zero
separation. The corresponding coherence function for ẗ11 is defined similarly. Figure 10
shows how the coherence magnitudes γ = |g| decay with streamwise separation ∆x
(at ∆y = 0), for Poiseuille flow at Reτ = 360 and three different frequencies. Figure 11
presents the corresponding plots for spanwise separation ∆y (at ∆x = 0).

It is clear from these comparisons that the wall-dipole coherence falls off faster
than the Reynolds-stress quadrupole coherence, in both the streamwise and spanwise
directions. The streamwise decay in the dipole case is approximately exponential. Note
that the ∆x scale extends to half the box length (∆x = 6); the ∆y scale is truncated
at one-sixth of the box length (∆y = 1), in order to show the rapid spanwise decay
in more detail. In all cases, the coherence magnitude decays to near zero (less than
3× 10−2) within half the box dimensions.
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Figure 12. Wavenumber–frequency spectral densities of Poiseuille flow sound radiation sources in
equation (60), plotted against streamwise wavenumber kx with ky = 0. Solid line: f = 5; dashed line:
f = 7.5; dash-dotted line: f = 10; dotted line: f = 15; long dashed line: f = 20; dash-double-dotted
line: f = 25. Reτ = 360. (a) Monopole, (b) streamwise dipole, (c) spanwise dipole, (d ) xx-quadrupole,
(e) xy-quadrupole, ( f ) yy-quadrupole.

The faster coherence decay in both directions for the fluctuating wall shear stress,
compared with the Reynolds stress averaged across the channel, makes it possible to
estimate the shear-stress correlation area from the DNS results with some confidence
at each frequency. In other words, the zero-wavenumber information on Sαβ(k, f)
required by (63) is accessible with the present box size. Further evidence to support
this statement is presented in § 6.7.

6.3. Source spectra for plane Poiseuille flow

Figure 12 presents numerical results for Poiseuille flow at Reτ = 360, equivalent to
Re = 14 500 based on centreline velocity and channel width. The spectral factors
Sm, Sαβ and Sαβγδ defined in (59) and (60) are plotted as functions of the streamwise
wavenumber, with the spanwise wavenumber set equal to zero. Throughout the rest
of § 6 we use x and y to label streamwise and spanwise directions, but retain Cartesian
subscripts (1, 2) for source terms; thus the xy-quadrupole spectra in figure 12(e) refer
to the S1212(k, f) term in (60).
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Figure 13. As figure 12 but for spanwise wavenumber ky with kx = 0.

Shown on each plot are six different scaled frequencies f (scaled on the friction
velocity u∗τ = (τ∗w/ρ∗)1/2 and channel half-width h∗). Convective peaks in the kx spectra
are clearly visible, as discussed in Hu et al. (2002); the peak wavenumber is positive,
and varies linearly with frequency, defining a convection velocity uc. However, the most
important observation for the present study is that in the sub-convective region (i.e.
|kx| < 2πf/uc), the wavenumber spectra remain finite as the streamwise wavenumber
approaches zero. This means that the incompressible simulation can provide estimates
of the sound radiation from each type of source, in the limit M � 1.

The small increase at large negative kx in the monopole spectral density for high
frequencies is an effect of numerical resolution. Numerical experiments have shown
that higher resolution will give monotonically decreasing spectra. The peaks observed
at zero wavenumber for f = 20 and 25 (monopole, xx-quadrupole) will be discussed
in § 6.4, in the context of numerical noise.

Figure 13 shows the same spectral factors plotted against spanwise wavenumber ky ,
with kx now set equal to zero. The y-dipole and the xx-quadrupole both show distinct
minima in their ky power spectra at ky = 0, but their zero-wavenumber values are
well above the numerical noise floor in most cases (except for the xx-quadrupole at



Sound radiation in turbulent channel flows 289

Ms

( f )

(d )

(b)(a)

(c)

(e)

Ms

S C
(0

,0
, f

) 
(d

B
)

–40

–80

–120

–160

–200

–40

–80

–120

–160

–200

–40

–80

–120

–160

–200

–40

–80

–120

–160

–200

–40

–80

–120

–160

–200

–40

–80

–120

–160

–200
10–4 10–3 10–210–4 10–3 10–2

10–4 10–3 10–210–4 10–3 10–2

10–4 10–3 10–210–4 10–3 10–2

S C
(0

,0
, f

) 
(d

B
)

S C
(0

,0
, f

) 
(d

B
)

Figure 14. Contribution of different source terms to far-field sound radiation intensity of plane
Poiseuille flow in the streamwise direction. Error bars are estimated from the uncertainty of
spectra near (0,0) wavenumbers. Dashed line: monopole; solid line: x dipole; dash-dotted line: xx
quadrupole. Reτ = 360. (a) f = 0.63, (b) f = 1.25, (c) f = 2.5, (d ) f = 5, (e) f = 10, ( f ) f = 20.

f = 20 and 25, noted above). Evidence for the robustness of these low-wavenumber
estimates will be presented in § 6.7.

For radiation in the streamwise direction with air as the fluid (λ = 0.4), the relative
contributions of the λ2Sm monopole term, the S1111 streamwise quadrupole term, and
the S11 streamwise dipole term to SΓ (0, f) are plotted in figure 14 as a function
of the Mach number Mτ (based on friction velocity). Note that the monopole and
quadrupole contributions both vary as M4, in contrast to the M2 dependence of the
dipole radiation; see equation (59) and the comments that follow.

Figure 14 shows that at sufficiently low Mach numbers, the dipole radiation is
dominant over the whole frequency range. For Reτ = 360 and frequencies up to
f = 20, this requires Mτ < 4 × 10−4. Since Mmax (the centreline Mach number) is
approximately 20Mτ in this case, it is clear that quadrupole radiation is insignificant
only for flows of very low Mach number, of order Mmax = 0.01 or less. However, the
monopole radiation due to fluctuating dissipation in air can be neglected entirely in
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in (60), evaluated at zero wavenumber for plane Poiseuille flow at Reτ = 360. Solid line: x-dipole;
dashed line: y-dipole; dash-dotted line: monopole; dotted line: xx-quadrupole; long-dash line:
xy-quadrupole; dash-double-dotted line: yy-quadrupole. For definition of Ŝ q(f), see (66).

the streamwise direction at this Reynolds number; it follows the same M dependence
as the quadrupole radiation, but lies 20 dB below it at low frequencies (f < 2.5),
increasing to 40 dB below it at f = 20. Compare figure 16 below for spanwise
radiation, where the gap is much less.

6.4. Relative contributions of the various source terms versus frequency

It is helpful to examine the various contributions to SΓ in the form of frequency
spectra, rather than at selected frequencies as in figure 14. However, this raises the
issue of numerical noise. It is clear from (62) that the terms in SΓ are related to more
fundamental quantities like SΨ by weighting factors that depend on Mach number and
frequency. Let Ψ , or any of the other fluctuating quantities (f1, f2, t11, t12, t22) whose
spectra appear in (62), be denoted by q(x, y, t). Spectral analysis of q in wavenumber
and frequency, as required for the acoustic calculation, amounts to partitioning the
signal energy into a three-dimensional array of bins, some of which may contain a
very small fraction of the total. In order to assess the numerical limitations of the
spectral analysis process, we define the normalized spectral quantity

Ŝ q(f) =
1

〈q2〉Sq(0, 0, f), (66)

i.e. the zero-wavenumber spectral density divided by the mean-square signal†, for
each of the q data files generated by the flow simulation. Figure 15 shows the various
Ŝ q plotted versus frequency for Poiseuille flow. Once Ŝ q falls below 10−9, there are
signs of numerical inaccuracy: there appears to be a numerical noise floor at around
10−9, possibly set by round-off errors in the threefold discrete Fourier transformation.
Reliable spectral information on Sq(0, 0, f) is generally limited to f < 25, with a slightly
lower cutoff (around f = 10–15) applying to the monopole and xx-quadrupole: this
explains the spikes at kx = 0 seen in the wavenumber spectra of figure 12(a) and
12(d ), at f = 20 and 25.

Keeping the last observation in mind, we turn to the final three figures of this
section on Poiseuille flow. Figure 16 focuses on source terms that contribute to
radiation in the spanwise direction: plotted versus frequency are the three relevant

† Note that Ŝ q(f) is closely related to the correlation area of q(x, y, t), since
(2π)2

∫ ∞
−∞ Ŝ q(f) df = Acorr =

∫ ∫ ∞
−∞ R̂q(ξ, η) dξ dη, where R̂q is the normalized cross-correlation

function of q, evaluated at zero time delay and spatial separation (ξ, η).
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at three different Reynolds numbers in plane Poiseuille flow (scaled to Mτ = 0.01): yy-quadrupole
(thick lines) versus monopole (thin lines). Reτ = 360 (solid line), 180 (dashed line), 135 (dash-dotted
line). Wavenumber spectra evaluated at zero wavenumber. Compare figure 16.

terms of (59), with the Mach number set equal to 10−2, and with λ = 0.4. At this
low Mach number, the y-dipole term is dominant over the whole frequency range
up to f = 5. Each of the other two terms (yy-quadrupole and monopole) has an
additional M2 weighting; it is interesting to see that the monopole contribution is
almost as large as the spanwise quadrupole at low frequencies (f < 1), but falls off
rapidly at high frequencies. The same monopole–quadrupole comparison is continued
in figure 17, for three different Reynolds numbers: progressive reduction of Reτ below
360 clearly enhances the low-frequency monopole contribution, while leaving the
spanwise Reynolds stress contribution largely unchanged.

Lastly figure 18 presents frequency spectra for the zero-wavenumber component
of the dipole source term S11 that dominates sound radiation in the streamwise
direction, again at three different Reynolds numbers. The peakiness apparent beyond
f = 4 at the lower Reynolds numbers, particularly at Reτ = 180, is probably a
numerical artifact; the same applies to the lower Reynolds numbers in figure 17.
Significantly, the flat region of the dipole source spectrum extends to higher scaled
frequencies (f = f∗h∗/u∗τ) as Reτ increases; figure 17 shows signs of a similar trend
for the monopole spectrum.

A feature of this plot, and also figure 16, is the inclusion of additional curves for
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finite k0: these are ‘compressible’ predictions, obtained by interpolating the three-
dimensional (kx, ky, f) source spectra at (kx = k0 = 2πfMτ, ky = 0) for streamwise
radiation, and at (kx = 0, ky = k0) for spanwise radiation. The quoted k0 values cor-
respond to a bulk mean Mach number of 0.34 in figure 16 and 0.17 in figure 18;
very little difference appears in the source spectra, as compared with the zero Mach
number limit.

6.5. Source spectra for plane Couette flow

Figures 19 and 20, calculated for Couette flow at Rew = 1300 based on wall velocity,
correspond to figures 12 and 13 for Poiseuille flow. The single convective peak seen in
the kx spectra of figure 12 is replaced by a double hump, consistent with the motion
of the two walls in opposite directions (Hu et al. 2002). Note that for Couette flow,
all frequencies are scaled on the wall velocity, rather than the friction velocity.

With respect to the zero-wavenumber limit, the same conclusion follows as before:
all the source spectra remain finite through kx = 0, ky = 0. At high frequencies
(f > 0.25), the monopole and xx-quadrupole kx spectra show a pronounced peak at
zero wavenumber (also visible at f = 20 and 25 for Poiseuille flow). The corresponding
ky spectra (spanwise) are noticeably lacking in symmetry, which suggests either
insufficient run time or a residual influence of finite spanwise box size. A similar
phenomenon can be seen in figure 13 for Poiseuille flow.

For radiation in the streamwise direction in air (λ = 0.4), figure 21 shows how the
relative contributions to SΓ (0, f) from the monopole spectrum Sm, the xx-quadrupole
spectrum S1111, and the x-dipole spectrum S11 vary with Mach number. Note that the
horizontal axis is the wall Mach number Mw , rather than Mτ. Over the frequency
range for which reliable data are available (up to f = 0.4), the wall-shear dipole
radiation is dominant for Mach numbers less than 10−2 over the entire frequency
range, at the Reynolds number of the present simulation (Rew = 1300). The dipole-
dominated range extends to higher Mach numbers as the frequency is reduced; for
example it reaches up to Mw = 0.1 at f = 0.1 ( f∗ = 0.1u∗w/h∗).

Finally, figure 22 for Couette flow may be compared with figure 18 for Poiseuille
flow. It shows frequency spectra for radiation in the streamwise direction from the
wall-shear dipoles (S11 source term), at two values of Rew . As with the corresponding
Poiseuille flow S11 spectrum, the flat region extends to higher scaled frequencies



Sound radiation in turbulent channel flows 293

10–7

10–9

10–10

10–8

10–10

10–12

10–14

10–16

10–5

10–6

10–8

10–9

10–10

–20 –10 0 10 20

10–8

10–9

10–10

10–11

10–12

( f )

(d )

(b)(a)

(c)

(e)

kx kx

S 12
12

(k
x
, k

y
=

0,
 f

)
S 22

(k
x
, k

y
=

0,
 f

)
S m

(k
x
, k

y
=

0,
 f

)

S 22
22

(k
x
, k

y
=

0,
 f

)
S 11

11
(k

x
, k

y
=

0,
 f

)
S 11

(k
x
, k

y
=

0,
 f

)10–8

10–11

10–12

10–7

–20 –10 0 10 20

–20 –10 0 10 20

–20 –10 0 10 20–20 –10 0 10 20

–20 –10 0 10 20

10–5

10–6

10–8

10–9

10–10

10–7

10–5

10–6

10–8

10–9

10–10

10–7

10–13

Figure 19. Wavenumber–frequency spectral densities of Couette flow sound radiation sources,
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(f = f∗h∗/u∗w) as Rew increases. Above f = 1 (Rew = 3400) or f = 0.4 (Rew = 1300),
the spectra run into numerical noise. The reason for using the lower Reynolds number
in figures 19–21 is the higher quality of the spectral statistics: because the Rew = 3400
case was expensive to compute, compromises had to be made with respect to box size
and run time.

6.6. Spectrum of radiated acoustic pressure in Poiseuille flow

In this section we show that the mean-square pressure at a point in the channel,
produced by summation of contributions radiated from the entire flow field, has a
spectrum that is independent of M in the low-M limit. This radiated contribution
to the pressure spectrum is compared with the local spectrum obtained from the
incompressible DNS, and found to be negligible except at low frequencies.

In the low-M limit, the radiated plane-wave pressure in the channel is dominated
by the wall-shear dipole term of (59). Substitution in (43) and integration over the
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entire channel gives

Sp,rad(f) =

∫ 2π

0

∫ ∞
0

sp(R, φ, f) e−2αRRdRdφ

' π

8

M

fα(f)
{S11(0, f) + S22(0, f)}, (67)

where R = |x|, φ is the azimuth angle and α(f) is the attenuation coefficient of the
lowest mode in the channel; all quantities are scaled on the friction velocity and the
channel half-width. The radiated acoustic pressure given by (67) is a two-dimensional
diffuse field, whose strength is controlled by α; in the absence of attenuation, the
pressure would be infinite.

Asymptotic estimates of α(f), valid at low and high frequencies, have been presented
in § 3.1 based on the work of Howe (1995). For the purpose of estimating Sp,rad from
(67), we use the simple interpolation formula

α(f) ≈ αe + α0, (68)

where αe is the low-frequency asymptote given by (24), and α0 is the flow-independent
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high-frequency asymptote given by (25).† Note that both αe and α0 contain a factor
Mτ; substitution of (68) in (67) therefore leads to a radiated pressure spectrum that
is independent of Mach number.

Figure 23 compares pressure spectra in the channel due to acoustic radiation
with wall pressure spectra from incompressible DNS, for three different Reynolds
numbers. At the lowest frequencies, the acoustic contribution approaches the local
‘incompressible’ pressure, with the closest approach occurring at Reτ = 135. At higher

† Howe (1995) has developed a more sophisticated formula that shows good agreement with
available measurements; his formula and (68) differ by at most a factor of 1.4, principally in the
transition region between the low- and high-frequency asymptotes.
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frequencies, however, the acoustic contribution is several decades lower. It would
be interesting to study the effect of Mτ on the turbulent wall pressure numerically,
by running a series of compressible Poiseuille flow simulations, in order to examine
whether compressibility does influence the pressure spectrum significantly at the low
end as figure 23 suggests.

6.7. Computational convergence

The results shown above have been tested for convergence with respect to box size
(Lx, Ly) and record length (T ). Typical results for plane Poiseuille flow are discussed
below. Box-size convergence for Couette flow has not been conclusively established;
the one comparison available (at Rew = 1300) is with a box of only (1/4 × 1/2)
the final dimensions (streamwise×spanwise), and a plot similar to figure 24 shows
differences of order 5 dB.

Figures 24 and 25 illustrate the effect of halving the box size in the streamwise
and spanwise directions, at two values of Reτ, with the same temporal and spatial
resolution as before. Results for the frequency dependence of the streamwise dipole
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source term are compared for different streamwise wavenumbers, with spanwise
wavenumber set to zero. It can be seen that the spectra agree well from f = 5 up
to the limit set by noise, at all wavenumbers. For low frequencies (f < 5), definite
box-size convergence of the Reτ = 360 simulation at low streamwise wavenumbers
(of order kx ≈ 3 or less) seems to require a larger box than we have used.

The influence of record length has been checked for Poiseuille flow by comparing
the spectra computed from different record lengths. Results from T = 20, which is
the standard record length used for all results presented so far, and T = 10 collapse
well throughout the frequency range of the present study (f = 0.6 to 25), as illustrated
in figure 26 for f = 5 and 25. This shows our results are not significantly influenced
by the finite record length of the simulation.

7. Discussion and conclusions
Sound radiation from turbulence at low Mach number has been estimated nu-

merically from first principles, for two well-defined flows in a plane channel. The
method combines direct numerical simulations of turbulence, based on the incom-
pressible Navier–Stokes equations, with a modified version of Lighthill’s (1952) anal-
ogy in which the usual Reynolds-stress quadrupoles are supplemented by order-M2

monopoles, equation (30), and order-1 surface dipoles, equation (29). The former arise
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from unsteady dissipation, and the latter from unsteady wall shear stresses. For both
Poiseuille and Couette flow, it has been possible to obtain robust spectral estimates of
all three source terms, and hence their relative contributions to the far-field intensity
spectrum.

The incompressible DNS results (see also Hu et al. 2002) support Chase’s (1991)
conjecture that the wavenumber–frequency spectrum of wall shear-stress fluctuations,
under an incompressible turbulent boundary layer, has a finite spectral density in the
low-wavenumber limit. The same applies to the sum of the shear stresses on opposite
walls of the channel, implying that the surface dipole distribution in the Lighthill
analogy has a finite spectral density at zero wavenumber. It is argued (see below) that
these low-wavenumber shear stresses exist independently of any acoustic response of
the channel associated with compressibility.

It follows that the far-field radiation from turbulent channel flow is dipole-
dominated, in the low-Mach-number limit. The sound power per unit channel area
varies asymptotically as M2, rather than M4 as would be the case for Reynolds stress
radiation, with the latter contribution beginning to take over at low frequencies at a
Mach number of order Mmax = 0.1. The unsteady-dissipation contribution is gener-
ally small compared with that of the Reynolds-stress quadrupole components at high
frequencies (figures 16, 17). However, for Poiseuille flow at low frequencies (f < 1,
figure 16), the two contributions in the spanwise radiation direction are within a factor
of 2 at Reτ = 360 (based on λ = 0.4); and as the Reynolds number is reduced, the
monopole contribution becomes dominant in this low-frequency region (figure 17).

A similar conclusion with regard to dipole dominance in wall-bounded flow at low
Mach numbers was reached by Wang, Lele & Moin (1996), based on incompress-
ible DNS of an unstable wave packet undergoing transition in a flat-plate laminar
boundary layer. The instantaneous shear force at the wall was integrated over a
rectangular region under the transition spot, of extent 140δ∗ (streamwise) by 25.95δ∗
(spanwise), where δ∗ is the displacement thickness of the inflow boundary layer. They
found that ‘If . . . the wall shear stress is considered a generation term dominated by
the hydrodynamic (non-acoustic) motion near the wall [then] at the late transition
stage, the surface sound due to viscous stress fluctuations dominates the far field for a
low-Mach-number flow . . . .’ Our findings from the channel flow study further support
the view that incompressible-flow wall-stress fluctuations act as dipole sources of
sound at low Mach number.

The process of sound generation in a turbulent boundary layer by unsteady wall-
shear stresses can be understood in terms of linear mode conversion at a solid
boundary. Whereas small-amplitude perturbations of vorticity, entropy and pressure
in a viscous fluid propagate independently in the absence of boundaries, coupling
between these three disturbance modes can arise either from the boundary conditions
or from bilateral interaction (Chu & Kovásznay 1958). For our purpose, the relevant
coupling mechanism is the conversion of an incident vorticity wave to an outgoing
pressure wave, via viscous action at a plane boundary.

This mechanism for sound production, first proposed in the present context by
Herbert, Leehey & Haj-Hariri (1999), is familiar in elastodynamics as mode conversion
from shear to dilatational waves. For vorticity waves in a viscous non-conducting
fluid, it yields predictions that are identical to the Lighthill analogy in the limit
fM2/Re→ 0, both for a half-space and for a plane channel. According to this
interpretation, the incident vorticity responsible for driving the process would be
silent in the absence of the wall, despite its wavenumber parallel to the wall being
smaller than the acoustic wavenumber k0. The vorticity is scattered into sound via
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viscous stresses at the boundary, in a manner analogous to the scattering of vorticity
at a trailing edge or a surface roughness element.

Importantly for the Lighthill analogy formulation, the linear model above reveals
no significant back-reaction of the sound field on the wall-shear stress generated by
an incident vorticity wave. It therefore appears justified to use wall-shear stresses
generated by an incompressible simulation as inputs to the acoustic calculation of
§ 6. Confirmation of the acoustic predictions made in that section must, nevertheless,
eventually be sought via a fully compressible simulation of turbulent channel flow.

This study was supported by EPSRC under Grant GR/M38865, and the Cray T3E
time was provided by EPSRC Grant GR/M08424. The authors thank Ian Castro
and Sergei Chernyshenko for useful discussions.

Appendix A. Scaling of density fluctuations in low-Mach-number turbulent
flow

A.1. Non-conducting fluid

In a non-reacting fluid of uniform composition, the density, ρ, can be expressed as a
function of pressure, P , and specific entropy, s. Perturbations in density, relative to a
reference state denoted by subscript 0, are related to P − P0 and s− s0 by

ρ− ρ0 =
1

c2
0

(P − P0)−
(
ραT

Cp

)
0

(s− s0) + (quadratic terms); (A 1)

here Cp is the constant-pressure specific heat, T is the absolute temperature, and α
is the thermal expansivity of the fluid. (The variables are all dimensional, with the *
superscript omitted.)

Suppose a turbulent shear layer is formed by the mixing of two uniform streams,
having the same properties (ρ0, P0, s0) but different velocities. At low Mach number,
the perturbations (P − P0, s − s0) scale as follows, in terms of suitable velocity and
length scales (Uref , Lref ):

P − P0 ∼ ρ0U
2
ref , s− s0 ∼ Φ

ρ0T0

Lref

Uref

. (A 2)

Here Φ is the viscous dissipation rate per unit volume; it scales as

Φ ∼ ρ0

U3
ref

Lref

, (A 3)

in turbulent flows at high Reynolds number. Note that the second of equations
(A 2) follows from the entropy equation for a viscous non-conducting fluid (see
Appendix B).

Substituting (A 2) and (A 3) in (A 1) gives

ρ− ρ0 ∼ (ρ0M
2, ρ0λM

2), (A 4)

for the scaling of density fluctuations in adiabatic turbulent flows; here M = Uref/c0,
and λ = αc2/Cp. The first term on the right is associated with fluctuations in pressure,
and the second term with fluctuations in entropy; however, both scale as M2.

A similar argument may be applied to the isentropic compressibility, K = ρ−1c−2,
to yield the scaling relation

K −K0 ∼ K0M
2. (A 5)
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A.2. Influence of thermal conduction

In a turbulent shear layer formed by two streams of the same temperature (isothermal
mixing),

T − T0 ∼ T0M
2, (A 6)

according to the argument of the previous section. Estimation of the thermal
conduction term (−∂qi/∂xi) in the entropy equation of Appendix B, using (A 6),
shows it to be of order M2 smaller than the viscous term under these con-
ditions. Equations (A 4) and (A 5) therefore remain valid for a thermally conducting
fluid.

Appendix B. Relation between R and the viscous dissipation function
The excess dilatation rate defined in equation (10) of the main text may be rewritten

in dimensional variables, using the continuity equation, as

R = −1

ρ

Dρ

Dt
+

1

ρc2

DP

Dt
. (B 1)

(All variables are dimensional, as in Appendix A, with the * superscript omitted for
convenience.) In a simple non-reacting fluid of uniform composition, it follows that
R is related to s (specific entropy) by

R =
αT

Cp

Ds

Dt
, (B 2)

where α is the volume thermal expansivity, and Cp is the constant-pressure specific
heat.

The material derivative Ds/Dt is related through the energy equation to the viscous
stress (components τij) and heat flux (components qi) as follows:

ρT
Ds

Dt
=
∂ui

∂xj
τij − ∂qi

∂xi
. (B 3)

The first term on the right is the viscous dissipation function Φ; the second term is
zero, in a non-conducting fluid with no radiative heat transfer.

From (B 2) and (B 3), for the restricted class of flows defined above,

R =
α

ρCp
Φ (adiabatic, non-reacting, uniform composition). (B 4)

We now introduce the non-dimensional Grüneisen parameter λ, defined by

λ =
ρ

T

(
∂T

∂ρ

)
s

=
αc2

Cp
. (B 5)

Combining (B 4) and (B 5) and reverting to scaled variables – as defined in § 2.1 – gives
the final result

R = λM2Φ+ O(M4). (B 6)

Here Appendix A has been used to write c − c0 ∼ c0M
2 and ρ − ρ0 ∼ ρ0M

2. Note
that introducing a finite thermal conductivity leads to an O(M4) correction term in
(B 6), for isothermal mixing; see §A.2 of Appendix A.
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